Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; : 107311, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657866

RESUMO

The Hippo signaling pathway plays an essential role in organ size control and tumorigenesis. Loss of Hippo signal and hyper-activation of the downstream oncogenic YAP signaling are commonly observed in various types of cancers. We previously identified STRN3-containing PP2A phosphatase as a negative regulator of MST1/2 kinases (i.e. Hippo) in gastric cancer (GC), opening the possibility of selectively targeting the PP2Aa-STRN3-MST1/2 axis to recover Hippo signaling against cancer. Here, we further discovered 1) disulfiram (DSF), an FDA-approved drug, which can similarly block the binding of STRN3 to PP2A core enzyme, and 2) CX-6258 (CX), a chemical inhibitor, that can disrupt the interaction between STRN3 and MST1/2, both allowing reactivation of Hippo activity to inhibit GC. More importantly, we found these two compounds, via a MST1/2 kinase-dependent manner, inhibit DNA repair to sensitize GC towards chemotherapy. In addition, we identified thiram (TH), a structural analog of DSF, can function similarly to inhibit cancer cell proliferation or enhance chemotherapy sensitivity. Interestingly, inclusion of copper ion enhanced such effects of DSF and TH on GC treatment. Overall, this work demonstrated that pharmacological targeting of the PP2Aa-STRN3-MST1/2 axis by drug compounds can potently recover Hippo signal for tumor treatment.

2.
J Agric Food Chem ; 72(14): 7727-7734, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530940

RESUMO

To discover novel transketolase (TKL, EC 2.2.1.1) inhibitors with potential herbicidal applications, a series of pyrazole acyl thiourea derivatives were designed based on a previously obtained pyrazolamide acyl lead compound, employing a scaffold hopping strategy. The compounds were synthesized, their structures were characterized, and they were evaluated for herbicidal activities. The results indicate that 7a exhibited exceptional herbicidal activity against Digitaria sanguinalis and Amaranthus retroflexus at a dosage of 90 g ai/ha, using the foliar spray method in a greenhouse. This performance is comparable to that of commercial products, such as nicosulfuron and mesotrione. Moreover, 7a showed moderate growth inhibitory activity against the young root and stem of A. retroflexus at 200 mg/L in the small cup method, similar to that of nicosulfuron and mesotrione. Subsequent mode-of-action verification experiments revealed that 7a and 7e inhibited Setaria viridis TKL (SvTKL) enzyme activity, with IC50 values of 0.740 and 0.474 mg/L, respectively. Furthermore, they exhibited inhibitory effects on the Brassica napus acetohydroxyacid synthase enzyme activity. Molecular docking predicted potential interactions between these (7a and 7e) and SvTKL. A greenhouse experiment demonstrated that 7a exhibited favorable crop safety at 150 g ai/ha. Therefore, 7a is a promising herbicidal candidate that is worthy of further development.


Assuntos
Cicloexanonas , Herbicidas , Piridinas , Compostos de Sulfonilureia , Herbicidas/farmacologia , Herbicidas/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Esqueleto , Pirazóis/farmacologia , Pirazóis/química , Tioureia
3.
J Clin Invest ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512451

RESUMO

Lactylation has been recently identified as a new type of posttranslational modification widely occurring on lysine residues of both histone and non-histone proteins. The acetyl transferase p300 is thought to mediate protein lactylation, yet the cellular concentration of the proposed lactyl-donor, lactyl-coenzyme A is about 1,000 times lower than that of acetyl-CoA, raising the question whether p300 is a genuine lactyl-transferase. Here, we report the Alanyl-tRNA synthetase 1 (AARS1) moonlights as a bona fide lactyl-transferase that directly uses lactate and ATP to catalyze protein lactylation. Among the candidate substrates, we focused on the Hippo pathway that has a well-established role in tumorigenesis. Specifically, AARS1 was found to sense intracellular lactate and translocate into the nucleus to lactylate and activate YAP-TEAD complex; and AARS1 itself was identified as a Hippo target gene that forms a positive feedback loop with YAP-TEAD to promote gastric cancer (GC) cell proliferation. Consistently, the expression of AARS1 was found to be upregulated in GC, and elevated AARS1 expression was found to be associated with poor prognosis for GC patients. Collectively, this work discovered AARS1 with lactyl-transferase activity in vitro and in vivo and revealed how the metabolite lactate is translated into a signal of cell proliferation.

4.
SLAS Discov ; 26(3): 364-372, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32914673

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been widely used for the assessment of drug proarrhythmic potential through multielectrode array (MEA). HiPSC-CM cultures beat spontaneously with a wide range of frequencies, however, which could affect drug-induced changes in repolarization. Pacing hiPSC-CMs at a physiological heart rate more closely resembles the state of in vivo ventricular myocytes and permits the standardization of test conditions to improve consistency. In this study, we systematically investigated the time window of stable ion currents in high-purity hiPSC-derived ventricular cardiomyocytes (hiPSC-vCMs) and confirmed that these cells could be used to correctly predict the proarrhythmic risk of Comprehensive In Vitro Proarrhythmia Assay (CiPA) reference compounds. To evaluate drug proarrhythmic potentials at a physiological beating rate, we used a MEA to electrically pace hiPSC-vCMs, and we recorded regular field potential waveforms in hiPSC-vCMs treated with DMSO and 10 CiPA reference drugs. Prolongation of field potential duration was detected in cells after exposure to high- and intermediate-risk drugs; in addition, drug-induced arrhythmia-like events were observed. The results of this study provide a simple and feasible method to investigate drug proarrhythmic potentials in hiPSC-CMs at a physiological beating rate.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/farmacologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Fenetilaminas/efeitos adversos , Quinidina/efeitos adversos , Sulfonamidas/efeitos adversos , Potenciais de Ação/fisiologia , Arritmias Cardíacas/prevenção & controle , Cálcio/metabolismo , Cátions Bivalentes , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Transporte de Íons/efeitos dos fármacos , Microeletrodos , Modelos Biológicos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Nifedipino/farmacologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Sotalol/efeitos adversos , Tetrodotoxina/antagonistas & inibidores , Tetrodotoxina/toxicidade , Verapamil/farmacologia
5.
Biopolymers ; 111(12): e23404, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33075850

RESUMO

Spiders can produce up to seven different types of silks or glues with different mechanical properties. Of these, flagelliform (Flag) silk is the most elastic, and aciniform (AcSp1) silk is the toughest. To produce a chimeric spider silk (spidroin) FlagR -AcSp1R , we fused one repetitive module of flagelliform silk from Araneus ventricosus and one repetitive module of aciniform silk from Argiope trifasciata. The recombinant protein expressed in E. coli formed silk-like fibers by manual-drawing. CD analysis showed that the secondary structure of FlagR -AcSp1R spidroin remained stable during the gradual reduction of pH from 7.0 to 5.5. The spectrum of FTIR indicated that the secondary structure of FlagR -AcSp1R changed from α-helix to ß-sheet. The conformation change of FlagR -AcSp1R was similar to other spidroins in the fiber formation process. SEM analysis revealed that the mean diameter of the fibers was around 1 ~ 2 µm, and the surface was smooth and uniform. The chimeric fibers exhibited superior toughness (~33.1 MJ/m3 ) and tensile strength (~261.4 MPa). This study provides new insight into design of chimeric spider silks with high mechanical properties.


Assuntos
Aranhas/classificação , Aranhas/metabolismo , Sequência de Aminoácidos , Animais , Fibroínas/química , Fibroínas/genética , Fibroínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sequências Repetitivas de Aminoácidos , Aranhas/genética , Resistência à Tração
6.
Int J Biol Macromol ; 145: 437-444, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31843611

RESUMO

Orb-weaving spiders produce a diversity of silk fibers throughout their entire lifecycle, and each silk type is given a specific purpose. As a dry fiber material with wet glue, pyriform silks are different from other silk fibers and make the attachment discs which are used for bonding fibers together and attaching dragline silk to other substrates. To date, only two full-length pyriform spidroin 1 (PySp1) gene sequences were identified. Here we present a novel full-length pyriform spidroin 2 (PySp2) from orb-weaving spider, Araneus ventricosus. Although the A. ventricosus PySp2 lack the long linker regions, the central repetitive region of PySp2 is more complex than PySp1 and can be classified into four types of repetitive regions including three novel repetitive sequences and one type of repetitive region that is similar to PySp1 repeats. Prediction of hydrophobicity of A. ventricosus PySp2 reveals the two new repetitive regions display strong hydrophilicity. Analysis of CD spectrum and secondary structure prediction for A. ventricosus PySp2 repeat unit reveal α-helix conformation dominates the repetitive region. Furthermore, recombinant protein-based artificial fibers show the single repeat unit is sufficient for self-assembling into silk fiber.


Assuntos
Fibroínas/química , Conformação Proteica em alfa-Hélice , Seda/química , Sequência de Aminoácidos/genética , Animais , Fibroínas/genética , Fibroínas/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Filogenia , Seda/genética , Seda/ultraestrutura , Aranhas/química
7.
Stem Cell Res ; 19: 94-103, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28110125

RESUMO

Most existing culture media for cardiac differentiation of human pluripotent stem cells (hPSCs) contain significant amounts of albumin. For clinical transplantation applications of hPSC-derived cardiomyocytes (hPSC-CMs), culturing cells in an albumin containing environment raises the concern of pathogen contamination and immunogenicity to the recipient patients. In addition, batch-to-batch variation of albumin may cause the inconsistent of hPSC cardiac differentiation. Here, we demonstrated that antioxidants l-ascorbic acid, trolox, N-acetyl-l-cysteine (NAC) and sodium pyruvate could functionally substitute albumin in the culture medium, and formulated an albumin-free, chemical-defined medium (S12 medium). We showed that S12 medium could support efficient hPSC cardiac differentiation with significantly improved reproducibility, and maintained long-term culture of hPSC-CMs. Furthermore, under chemical-defined and albumin-free conditions, human-induced pluripotent stem cells (hiPSCs) were established, and differentiated into highly homogenous atrial and ventricular myocytes in a scalable fashion with normal electrophysiological properties. Finally, we characterized the activity of three typical cardiac ion channels of those cells, and demonstrated that hPSC-derived ventricular cardiomyocytes (hPSC-vCMs) were suitable for drug cardiac safety evaluation. In summary, this simplified, chemical-defined and albumin-free culture medium supports efficient generation and maintaining of hPSC-CMs and facilitates both research and clinical applications of these cells.


Assuntos
Meios de Cultura/química , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Potenciais de Ação/efeitos dos fármacos , Antioxidantes/farmacologia , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia de Fluorescência , Miócitos Cardíacos/metabolismo , Nifedipino/farmacologia , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Células-Tronco Pluripotentes/metabolismo , Piridinas/farmacologia , Tretinoína/farmacologia
8.
Stem Cells Dev ; 26(7): 528-540, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27927069

RESUMO

The epicardium promotes neovascularization and cardiomyocyte regeneration by generating vascular smooth muscle cells (SMCs) and producing regenerative factors after adult heart infarction. It is therefore a potential cell resource for repair of the injured heart. However, the epicardium also participates in fibrosis and scarring of the injured heart, complicating its use in regenerative medicine. In this study, we report coexpression of TBX18 and WT1 in the majority of epicardial cells during mouse embryonic epicardial development. Furthermore, we describe a convenient chemically defined, immunogen-free, small molecule-based method for generating TBX18+/WT1+ epicardial-like cell populations with 80% homogeneity from human pluripotent stem cells by modulation of the WNT and retinoic acid signaling pathways. These epicardial-like cells exhibited characteristic epicardial cell morphology following passaging and differentiation into functional SMCs or cardiac fibroblast-like cells. Our findings add to existing understanding of human epicardial development and provide an efficient and stable method for generating both human epicardial-like cells and SMCs.


Assuntos
Diferenciação Celular/fisiologia , Miócitos Cardíacos/citologia , Miócitos de Músculo Liso/citologia , Pericárdio/citologia , Células-Tronco Pluripotentes/citologia , Animais , Fibroblastos/citologia , Humanos , Camundongos , Proteínas Repressoras/genética , Proteínas com Domínio T/genética , Proteínas WT1/genética
9.
J Am Soc Nephrol ; 27(11): 3331-3344, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26961349

RESUMO

Cisplatin is an effective anticancer drug; however, cisplatin use often leads to nephrotoxicity, which limits its clinical effectiveness. In this study, we determined the effect of dichloroacetate, a novel anticancer agent, in a mouse model of cisplatin-induced AKI. Pretreatment with dichloroacetate significantly attenuated the cisplatin-induced increase in BUN and serum creatinine levels, renal tubular apoptosis, and oxidative stress. Additionally, pretreatment with dichloroacetate accelerated tubular regeneration after cisplatin-induced renal damage. Whole transcriptome sequencing revealed that dichloroacetate prevented mitochondrial dysfunction and preserved the energy-generating capacity of the kidneys by preventing the cisplatin-induced downregulation of fatty acid and glucose oxidation, and of genes involved in the Krebs cycle and oxidative phosphorylation. Notably, dichloroacetate did not interfere with the anticancer activity of cisplatin in vivo. These data provide strong evidence that dichloroacetate preserves renal function when used in conjunction with cisplatin.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Ácido Dicloroacético/uso terapêutico , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Animais , Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...